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This investigation demonstrates one method of mapping
. relational algebra operators to a network database. It does

this by defining relations on a network model in terms of
network operators.
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Abstract

This thesis is an example of a mapping of a relational

* algebra query onto a network database. It consists of the

requirements, definition, design and implementation of two

generic COBOL programs for implementing such a mapping.

The first program STOREMAP uses a batch input file to

build a data dictionary, on the original network database,

which defines the relations on which relational algebra

queries may be made. This input file is created by the Data

Base Administrator who is the most knowledgeable of the

0 structure of the network database and the relations which

would be useful to the database's users.

The second program NETTOREL uses the defined relations

in the data dictionary and relational algebra queries

created by a user to generate a result relations. Data to

be included in a result relation is determined by the data

dictionary's definition of the relations contained in an

associated query and the criteria set by that query.

This original effort shows that the theory for such an

operator mapping is valid. Further efforts would be needed

to make this implementation user friendly and therefore

useful.
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CHAPTER I

INTRODUCTION

1.1 BACKGROUND

The objective of a database management system is to
N

centralize control of operational data for computer users.

131 This centralized control reduces the amount of redundant

information stored, avoids inconsistency, allows data to be

shared, security measures to be applied and integrity to be

maintained [Date 1981]

Data independence is an additional benefit desired from

databases. It gives applications immunity from changes in

the way data is stored and accessed. Databases provide data

independence by providing an interface between the

-application software and the operating system.

Different levels of abstraction from the physical

storage and access of data provide different levels of data

%independence. The higher the level of abstraction the less

..- the user has to know about the structure of the data and the

.-smaller the set of operators required to perform data access

-I-
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~. CHAPTER I INTRODUCTION

and storage. A higher level of abstraction is more "user

friendly " allowing the user to learn less for data

processing.

-Conversely, the lower the level o' Jstraction the more

4 control the user has over the data. Npplications taking

advantage of that control are mor -ficient, but this

requires that the user have a strong gLasp on the structure

of the data. The lower the level of abstraction the closer

it is to the data access which means the larger the set of

options which can be tailored to a user's specific need.

This is usually done by an application program and requires

an application programmer to generate an interface for the

user.

There are currently three database models available: (1)

hierarchical, (2) network and (3) relational. Hierarchical

*1 and network are on the same level of abstraction and require

an interface in the form of an application program.

Relational is at a high level and allows the user to

formulate his own relational queries. This thesis research

is exploring the possibility of using a network application

program to act as an interface between the data and user,

thereby providing the user with relational view of a

network database which is more "user friendly".

1-2
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" CHAPTER I INTRODUCTION

1.1.1 RELATIONAL DATABASE MODEL

The objective of the relational database model as

defined by Codd, is "to provide a sharp and clear boundary

between the logical and physical aspects of database

management, ... to make the model structurally simple ...

and to introduce a high level of language concepts to enable

users to express operations upon large chunks of information

at a time" [Codd 19821.

The relational model uses the concept of associative

addressing which allows the value of a data item to identify

its inclusion in results. Associative memory allows

multiple vertical data cells to be tested for a particular

value simultaneously and each set of horizontal cells which

pass the test is marked. Then the marked cells are moved

for further processing. The contents of the cells rather

then their location determines their possible inclusion in a

result area.

0-6 The relational database model uses this same concept of

data value determining inclusion as opposed to data

location. For example what row a tuple is in a relation has

no effect on a select operation, rather it is the value of a

particular data item for a particular attribute which causes

a tuple to be included. Associative addressing makes the

database independent of the physical location of the data.

1-3
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CHAPTER I INTRODUCTION

1.1.1.1 RELATIONAL DATA STRUCTURE

* The data structure of the relational model is a two

dimensional table called a relation. It consists of tuples

which make up the rows in the table and attributes which

make up the columns. The inter-relationship of the data is

* established by its value. That value can be used to

represent relationships with data from other domains

dependent on their groupings. There is also an implied

relationship among data items when they are defined as being

contained in the same tuple or attribute.

For example, two tuples residing in two different

relations which have the same value for a given data item

can be used to establish a relationship among all the data

items within both tuples. The value implies the

relationship as opposed to an explicit definition.

There are explicit relationships defined by functional

dependencies, which can be used to define a relational

database, but these are not permanent parts of the database.

Rather, they are used to define the logical structure of the

database and become implied relationships once the design is

implemented.

1.1.1.2 RELATIONAL OPERATORS

The relational model has a very small number of

operators because it operates on large chunks of

information. This is part of what makes the relational

1-4



- CHAPTER I INTRODUCTION

model so "user friendly". The relational model provides a

wide choice of underlying data access structures since it is

*"-" at so high a level of abstraction. A poor choice for the

underlying structure can result in very slow access time and

wasted memory.

Current relational model implementations do not try to

bridge the wide gap between the relational data structure

and data access. They do not provide a way of storing

explicit information about the relationships of specific

data which could be used for logical addressing in a direct

access world. This is why relational model implementations

are often viewed as inefficient. When technology can

provide inexpensive associative addressing hardware such a
".

bridge will not be needed but due to current cost factors

that will not be in the near future. If relational

databases are to be competitive a bridge between relations

and direct access must be found.

1.1.2 NETWORK DATABASE MODEL

The Conference on Data Systems Language (CODASYL) is the

standard used for the network model. CODASYL was designed by

committee (CODASYL Data Base Task Group). It is based on a

two-level set or tree structure, with the programmer

navigating through the database. This requires a knowledge

of the data structure and an understanding of how to

navigate it. It also provides the programmer with a high

1-5
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CHAPTER I INTRODUCTION

degree of control which allows for more efficiency. A

network database can only be accessed with an application

* * !program.

1.1.2.1 NETWORK DATA STRUCTURE

S." The network data structure is a series of record types

which maybe linked together via a series of set types.

These links may be one-to-many or many-to-many. A network

is very versatile and also can become very complicated.

It's level of abstraction is closer to the operating system

then to the user and requires the interface of an

application program to access the data.

There are implied relationships within a network data

structure, such as, two data types being stored in the same

record type. There are also explicit relationships as

represented in the set types which defines which record

types own which member record types. It is these explicit

relationships which allow for the tight control over the

data and give the application programmer the ability to

-" define the types of direct addressing to be used for data

" access.

1.1.2.2 NETWORK OPERATORS

Network operators deal with records and sets. There is

_ no provision for accessing multiple records with a single
'.

operator. In fact a single operator may be used in a

1.

1-6



CHAPTER I INTRODUCTION

variety of ways (e.g. there are six different "find"

statements). A series of these operators can be used to

form a path through the database. These paths are defined

by the application programs.

The efficiency of the database is dependent on the

quality of the design. Currently there are no straight-

forward rules, such as functional dependencies, for

measuring the quality of the design. Also the database may

be tailored to be very efficient for one application at the

expense of other applications. This is a result of design

choices regarding pointer establishment.

1.1.3 COMPARING RELATIONAL AND NETWORK

The relational model is at a higher level of abstraction

than the network model and, as such, is closer to the user.

The relational model has complete data independence by using

associative addressing. This higher level of abstraction

makes the relational model more user friendly than the

network model. The network model is on a level of

abstraction closer to the data storage medium. The network

model uses physical addressing which allows it more control

over data storage and access and it is more efficient then

the relational model.

1.1.3.1 DATA STRUCTURES

The relational model deals with a two dimensional table

data structure. This structure is very familiar to people

1-7



CHAPTER I INTRODUCTION

and one that is dealt with frequently. This familiarity is

part of what makes the relational model easier to learn and

understand. The network model uses a collection of one

dimensional record types which are linked together via set

types which form paths through the data. These paths can

become very complicated and are often hard for an

application programmer to understand, let alone an

unsophisticated user.

1.1.3.2 OPERATORS

Relational operators deal with larger chunks of

information than the network operators and have a smaller,

easier to learn set of operators. The relational operators

are also closer to English sentences which makes them more

useful in the area of artificial intelligence. The network

operators have more control over the access and storage of

data and also have more versatility then the relational

model operators. The network model is currently used more

then the relational model.

1.2 PROBLEM STATEMENT

A genuine need exists for a readily usable database

model that provides immediate access of nonredundant

information.

The end users' need for new application programs is

"- exceeding the capacity of data processing departments.

1-8
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CHAPTER I INTRODUCTION

Because the relational model is easy to understand it allows

the end user to bypass the application programmer and

formulate their own queries to access their data [Codd

19791. But due to the present need to retrieve data through

physical addressing, many relational databases are

inefficient.

Network databases are currently selected by commercial

users because they are more efficient, more economically

prominent and have more stable software then the relational

model (Fallahzadeh 1982]. The complexity of the network

model requires an application programmer to navigate the

database for the user.

1.3 SCOPE

The scope of this thesis is to use the network model to

bridge the gap between the relational model and the storage

and access of the data. This is done by mapping the

relational data structure onto a network database. This

mapping is implemented using network operators. Additional

network operators can then be embedded in these mappings to

I'i' perform the relational operations.

An Integrated Database Management System (IDMS) CODASYL

model was used for the network model and the mapping to the

relational structure is stored within the database.

Relational algebra queries are translated into IDMS

operators and then embedded into the relational structure

1-9
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CHAPTER I INTRODUCTION

mappings. Results are displayed as a relational table.

1.4 ASSUMPTIONS

The relational algebra operators are those defined by E.

* F. Codd in his 1970 pioneering paper [Codd 1970). The IDMS

operators will be limited to those defined by the CODASYL.4

Data Base Task Group in their April 1971 report [Data Base

Task Group 1971].

The network application program produced in this thesis

effort will be truly useful if it can interface with any

IDMS database. This requires converting IDMS Data

Manipulation Language (DML) statements into COBOL statements

without using a precompiler.

1.5 SUMMARY OF CURRENT KNOWLEDGE

Although the inefficiency of relational databases is

still being debated, many solutions have been proposed to

make it more efficient. Solutions for decreasing access and

storage time have included new hardware, taking advantage of

. the associative addressing of the model, and the

optimization of queries. Functional dependencies are used

to reduce data redundancy.

1.5.1 HARDWARE SOLUTIONS

Hardware solutions use associative memory processors to

allow simultaneous queries on rows within tables. The three

°" " basic approaches have been logic-per-track, high-speed
.

o..

'1-1
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CHAPTER I INTRODUCTION

processors, and special-purpose peripherals. Unfortunately

under current technological constraints all three are

prohibitively expensive.

Content Address Segment S.equential Memory uses the

logic-per-track approach. It consists of a linear array of

cells composed of a processing element and a memory element

that is able to communicate with adjacent cells [Libovski

1978]. Another logic-per-track system is the Rotating

Associative Relational Store. It stores a row from a table

across a band of tracks instead of a single track. Each

band has logic associated with it [Landon 1978].

A Relational Associative Processor is a high speed

processor that uses a relatively small number of parallel

processing cells for storing tables. Each cell is composed

of a processor and a block addressable memory. The

processor handles database definitions, insertions,

deletions, updates and retrievals. A controller receives

instructions from a host computer. The controller decodes

these instructions then broadcasts control sequences to

initiate cell execution, and passes retrieved items to the

host computer [Ozkarahan 19801.

Content Addressable File Store Hardware (CAFSH) is a

special-purpose peripheral. It uses a selector to set up

key registers with the key value pairs. A row is removed

from disk storage. As a row enters each key register, a

latch is set if the value in a column in the row fulfills a

I-ll

J4 * . . - .. . .

.



CHAPTER I INTRODUCTION

test criteria (larger, smaller or the same) against the

value in the key register. The results of the key registers

then go to latch comparators. If the condition within the

selector was met then the output line will be set to one.

All rows whose output lines are a one are sent to the host

computer [Babb 1978].

1.5.2 OPTIMIZING

Because the relational database model is at such a high

level of abstraction it allows queries to be written under

current implementations that take a great deal of time to

execute. By using a processor to rephrase the query,

execution time could be reduced. This technique is called

optimization [Ullman 19821.

There are several optimizing strategies. The most

common is using algebraic manipulations to reduce the

execution time of queries. Certain relational operations,

such as a select, can reduce the size of a relation before

doing more costly operations, such as joins. By rephrasing

the queries so that these reducing operators are done first,

the execution time for the entire query can be reduced.

A lower level of optimization deals with how to use

information about the organization of the file holding

relational information to minimize access time. This type

.-. of optimization is very dependent on the implementation of

the relational model used. Most commonly, relational

1-12
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CHAPTER I INTRODUCTION

implementations rely heavily on indices to decrease data

access time.

There are problems with both of these types of

optimizing. The first takes time to optimize and if the

• " query is already optimal, it will take longer to process.

The second strategy increases the amount of memory needed to

store relations with the overhead of indices. An increase

in storage space is needed to reduce access time.

1.5.3 FUNCTIONAL DEPENDENCIES

4- Functional dependencies define the relationships among

the attributes within a relation. They "are actually

assertions about the real world" and should be enforced by a

Data Base Management System (DBMS) [Ullman 19821.

Certain relations can be broken down into multiple

relations and by doing so reducing the amount of redundant

data. Functional dependencies can be used to determine

where to break a table without losing information.

* .Tables can be broken in such a way as to retain all the

information but some of the functional dependencies can be

lost. The database designer must be aware of this and

determine if such a loss is acceptable. If not, not

breaking a table over a functional dependency can cause

redundant information to be retained. A tradeoff must be

made when using functional dependencies to break down

1-13



CHAPTER I INTRODUCTION

tables. Although using functional dependencies to break

down tables allows less data to be stored such breaks

requires a costly join across all the smaller relations to

retrieve the original relation. The typical tradeoff is

more memory for faster access.

1.6 APPROACH

The approach taken consists of defining a way to map from

a network data structure to a relational data structure and

using that to implement relational algebra queries. A

description of how to create such a map presented along with

how to modify that map to implement queries. A generic IDMS

application program written in COBOL was produced to store

this mapping data on any IDMS database to be queried

against.

A second generic program was produced to retrieve the

data structure mappings and modify them to implement the

relational algebra queries. This program has been written

in COBOL and does not use the IDMS precompiler for the IDMS

DML statements.

For an IDMS record type to be included in a relation it

must be connected to at least one other record type in the

relation via a set type or must be the only record type in

the relation. Each record type must have a mapping defined

*by the Data Base Administrator (DBA) starting with it and

reaching all other record types in the relation.

1-14
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CHAPTER II

REQU I REMENTS
S

-2.1 OVERALL REQUIREMENTS

This thesis research shows that it is possible to give

network database users a relational view of their data.

This is a two step process. The first step is to define a

0 mapping between a network data structure and a relational

data structure. The second is to use these defined mappings

to retrieve the network data and implement a relational

query using network operators and display the results in a

* relational form.

2.2 RELATION DEFINITIONS

All the record types to be included in a relation must

be connected by set types. This way pointers are

established linking record occurrences together and an

explicit relationship among record occurrences is defined

(Figure II-l).

Il-
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CHAPTER II REQUIREMENTS

Valid Network Relation Structure

Record
Type A

Set A-B Set A-C

Record Record
Type B Type C

Invalid Network Relation Structure

Record
V. IType A

.4. --

Set A-B

Record Record
Type B Type C

Figure II-1. Valid and Invalid Network Structures

11-2
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CHAPTER II REQUIREMENTS

2.2.1 TUPLE DEFINITION

In most cases the data structure path will include a

nesting structure. At each level of the path it is possible

for a given owner record occurrence to be memberless or a

member occurrence to be ownerless. To avoid incomplete data

from being included within the result relation, status

checks for such occurrences are done after IDMS data

retrievals.

2.3 DATA STRUCTURE MAPPING

A relation can be defined in terms of a set of CODASYL

record types, set types and operators to define a navigation

path through a network database. The sets define the

explicit relationships between record types and implicit

relations are given by the field definitions of the records.

For example lets look at the valid relational structure

used in Figure II-i and lable it Relation ABC. Figure 11-2

defines the record occurences in the record types A, B, and

C and the fields contained in the record occurences for each

type. Figure 11-3 defines the explicit relations of the

record occurrences via the set types A-B and A-C. The

implied relations are defined by the field values contained

in the same record occurrence.

Now using the record occurrence definitions in Figure

11-2 and the data relationships defined in Figure 11-3 the

operators needed to navigate the CODASYL database are given

11-3
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CODASYL RECORD DESCRIPTIONS FOR RECORD TYPE A

Record Record
Occurrence Contents
Al all, a12, a13
A2 a21, a22, a23
A3 a31, a32, a33
A4 a4l, a42, a43

CODASYL RECORD DESCRIPTIONS FOR RECORD TYPE B

Record Record
Occurrence Contents
Bl bll, b12, b13
B2 b21, b22, b23
B3 b31, b32, b33
B4 b41, b42, b43
B5 b51, b52, b53
B6 b61, b62, b63

CODASYL RECORD DESCRIPTIONS FOR RECORD TYPE C

Record Record
Occurrence Contents
Cl cll, c12, c13
C2 c21, c22, c23
C3 c31, c32, c33
C4 c41, c42, c43
C5 c51, c52, c53
C6 c61, c62, c63
C7 c71, c72, c73

Figure 11-2. CODASYL Record Descriptions
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in Figure 11-4 and the results of such a navigation is given

in Figure 11-5. Notice record occurrence A3 does not have

an entry in Relation ABC because it has no record type Cs

linked to it and likewise record occurrence A4 has no

entries since it has no record type Bs linked to it.

A defined navigation path within a CODASYL database maps

to a tuple in the relational data structure. Each record

-. type contained in a relation must have a different

navigation path defined by the DBA(Figure 11-6). These

paths are defined in terms of CODASYL operators and are to

be stored within the CODASYL database the relation is

defined for. A generic data retrieval program uses these
paths as a mapping between a network data structure used to

access the data and a relational data structure used to

*" display query results.

A different path is needed for each record type in a

relation to be used within a given relation to provide for

optimal usage of the CODASYL operators for each given query.

For example if a select clause is contained within a

relational algebra query then the starting point of the path

traversal should be the record type which contains the

attribute specified in the select operation to avoid a

linear search through the CODASYL database. For example

Figure II-7 shows the new CODASYL operators needed if the

S-". navigation path were to start with Record Type B.

11-6
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CODASYL Operators Occurrence
Retrieved

OBTAIN FIRST A Al
OBTAIN FIRST B WITHIN A-B Bi
OBTAIN FIRST C WITHIN A-C Cl
OBTAIN NEXT C WITHIN A-C C2

* OBTAIN NEXT C WITHIN A-C C3
OBTAIN NEXT B WITHIN A-B B2
OBTAIN FIRST C WITHIN A-C Cl
OBTAIN NEXT C WITHIN A-C C2
OBTAIN NEXT C WITHIN A-C C3
OBTAIN NEXT B WITHIN A-B B3
OBTAIN FIRST C WITHIN A-C Cl
OBTAIN NEXT C WITHIN A-C C2
OBTAIN NEXT C WITHIN A-C C3
OBTAIN NEXT A A2
OBTAIN FIRST B WITHIN A-B B4
OBTAIN FIRST C WITHIN A-C C4
OBTAIN NEXT C WITHIN A-C C5
OBTAIN NEXT C WITHIN A-C C6
OBTAIN NEXT B WITHIN A-B B5
OBTAIN FIRST C WITHIN A-C C4
OBTAIN NEXT C WITHIN A-C C5
OBTAIN NEXT C WITHIN A-C C6
OBTAIN NEXT A A3
OBTAIN FIRST B WITHIN A-B B6

OBTAIN FIRST C WITHIN A-C no record
OBTAIN NEXT A A4
OBTAIN FIRST B WITHIN A-B no record

Figure 11-4. CODASYL Operators to Navigate Database

-S-
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all, a12, a13, bli, b12, b13, cli, c12, c13

all, a12, a13, bll, b12, b13, c21, c22, c23

all, a12, a13, bll, b12, b13, c31, c32, c33

all, a12, a13, b21, b22, b23, cll, c12, c13

all, a12, a13, b21, b22, b23, c21, c22, c23

all, a12, a13, b21, b22, b23, c31, c32, c33

all, a12, a13, b31, b32, b33, cll, c12, c13

all, a12, a13, b31, b32, b33, c21, c22, c23

all, a12, a13, b31, b32, b33, c31, c32, c33

a21, a22, a23, b41, b42, b43, c41, c42, c43

a21, a22, a23, b41, b42, b43, c51, c52, c53

a21, a22, a23, b41, b42, b43, c61, c62, c63

a21, a22, a23, b51, b52, b53, c41, c42, c43

a21, a22, a23, b51, b52, b53, c51, c52, c53

a21, a22, a23, b51, b52, b53, c61, c62, c63

Figure 11-5. Relation ABC
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CHAPTER II REQUIREMENTS

Mapping Beginning With Record Type A

OBTAIN NEXT A
OBTAIN NEXT B WITHIN A-B
OBTAIN NEXT C WITHIN A-C

Mapping Beginning With Record Type B

'I OBTAIN NEXT B
OBTAIN OWNER WITHIN A-B
OBTAIN NEXT C WITHIN A-C

Mapping Beginning With Record Type C

OBTAIN NEXT C
OBTAIN OWNER WITHIN A-C
OBTAIN NEXT B WITHIN A-B

Figure 11-6. Mapppings for Different Record Types

.11-9
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CODASYL Operators Occurrence
Retrieved

OBTAIN FIRST B Bi
OBTAIN OWNER WITHIN A-B Al
OBTAIN FIRST C WITHIN A-C Cl
OBTAIN NEXT C WITHIN A-C C2
OBTAIN NEXT C WITHIN A-C C3
OBTAIN NEXT B B2
OBTAIN OWNER WITHIN A-B Al
OBTAIN FIRST C WITHIN A-C Cl
OBTAIN NEXT C WITHIN A-C C2
OBTAIN NEXT C WITHIN A-C C3
OBTAIN NEXT B B3
OBTAIN OWNER WITHIN A-B Al
OBTAIN FIRST C WITHIN A-C Cl
OBTAIN NEXT C WITHIN A-C C2
OBTAIN NEXT C WITHIN A-C C3
OBTAIN NEXT B B4
OBTAIN OWNER WITHIN A-B A2
OBTAIN FIRST C WITHIN A-C C4
OBTAIN NEXT C WITHIN A-C C5
OBTAIN NEXT C WITHIN A-C C6
OBTAIN NEXT B B5
OBTAIN OWNER WITHIN A-B A2
OBTAIN FIRST C WITHIN A-C C4
OBTAIN NEXT C WITHIN A-C C5
OBTAIN NEXT C WITHIN A-C C6
OBTAIN NEXT B B6
OBTAIN OWNER WITHIN A-B A3
OBTAIN FIRST C WITHIN A-C no record
OBTAIN NEXT B no record

Figure 11-7.
CODASYL Operators to Navigate Database Starting at B

II-10
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This thesis effort explored the possibility of using an

application program's subschema to generate the navigation

path for a relation. This could have been implemented by a

piece of software. For example the subschema SUBSCABC shown

in Figure 11-8 contains the records and sets used in Relation

* OABC and the same operators shown in Figure 11-6 could have

been generated from the subschema and produced the same

Relation ABC.

Subschema ABC

ADD SUBSCHEMA NAME IS SUBSCABC
OF SCHEMA NAME IS SCHMABC
DMCL NAME IS ABCDMCL.

ADD RECORD A.
* ADD RECORD B.

ADD RECORD C.

ADD SET A-B.
ADD SET A-C.

Figure 11-8.
CODASYL Subschema Mapping to CODASYL Operators

Figure 11-9 is an example of a network structure with a

loop. The same two record types are in two different set

types. In one set type (A.B) record type A owns record type
"-A.

B. In the other set type (B.A) record type B owns record

type A. There are three possible relations which could be

defined. Those record occurrences in A and B where A owns B

(Relation A-B), those record occurrences in A and B where B

"., II-ii
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Record
Type A

Set A-B Set B-A

Recordr
Type B

Relation A-B Relation B-A Relation A-B-A

."

Record Record Record
Type A Type B Type A

Set A-B Set B-A Set A-B Set B-A

Record Record Record
Type B Type A Type B

Figure 11-9. Example Database Bachman Diagrams
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owns A (Relation B-A) or those record occurrence in A and B

where A owns B and B owns A (Relation A-B-A).

In the subschema needed for Figure 11-9 a decision must

be made as to which path or paths should be used requires

the intervention of a DBA. This is what precluded using

such a subschema to generate the path but it would be useful

in subschemas which did not have a looping structure. Time

did not permit such an implementation since it would not

work for all applications.

The DBA is the one most knowledgeable on the intent of

the database. He is the logical choice for defining these

mappings. In the above example all three possible relations

could be defined, if they would be meaningful, and useful to

a user.

In a complicated CODASYL database these data structure

mappings will be just as complicated as are currently needed

for application programs. But, by defining the paths in

terms of relations it will give the user the ability to view

the data from different perspectives without requiring a set

of tailor made application programs. Also, only the DBA

will need to deal with the complexity of the data structure

instead of multiple application programmers.

2.4 OPERATOR MAPPINGS

Only the select, project, and join operators are

implemented within this research. To implement these

11-13
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defined result attributes in the result working storage

area. The projection operators are implemented by skipping

those fields which are not to be projected.

2.4.3 JOIN MAPPING

The join operator has been limited to relations which

have a record type in common. If two relations have a

record type in common then a set type record in each

.relation will contain that record since it is a requirement

that all record types defined in a relation must be

connected via set type. This means the pointers needed to

connect the two relations will be present. This allows a

single mapping of all the record types in both relations to

be created from a mapping already defined from each relation

. being joined. This means all the record types contained in

the mapping as a result of the join will be connected by a

set type. Figure II-10 and 11-12 are examples of two

possible relations that could be joined and Figure II-11 and

11-13 are the results of such joins.

4. 2.4.4 DEALING WITH DUPLICATES

According to the definition of a relation duplicate

tuples are not allowed. To avoid duplication a sort must be

done on the resulting relation and duplicates removed.

Duplicates could occur because a record type might be used

to retrieve its member records but none of its data

11-15
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Relation A-B Relation A-C

4;Record Record
Type A Type A

Set A-B Set A-C

Record Record
Type B Type C,

Figure II-10. Input Relations With Same Owner
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Record
Type A

Set A-B Set A-C

Record Record
Type B Type C

Figure II-li. Result Relation with Same Owner

11-17
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Relation A-C Relation B-C

Record Record

Type A Type A

Set A-C Set B-C

2
Record Record
Type C Type C

Figure 11-12. Input Relations with Same Member
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Record Record
Type A Type B

Set A-C Set B-C

Record

Type C

Figure 11-13. Result Relation With Same Member
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reported allowing two tuples to differ only by the missing

data.

2.5 DATA DICTIONARY REQUIREMENTS

The data dictionary for defining relations will be

stored in a CODASYL format upon the database being queried.

It will contain entries for the record types to be used, the

set types, the attribute names and their associated record

types and displacement and the navigation path description

(data structure mappings) in terms of CODASYL operators.

2.6 INPUT/OUTPUT REQUIREMENTS

All input and output will be done in a batch

environment. Relational queries will be according to the

format and the symbols defined in Appendix A. The batch

* input syntax for both generic programs is given in Appendix

H. The format of the output file will be determined by the

data structure mappings and any project operators included

within the relational algebra query. The structure of the

output file will be in the form of a relation. Multiple

queries on the same database is allowed.

11-20
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CHAPTER III

SYSTEM DESIGN

3.1 GENERAL DESIGN CRITERIA

Two generic application programs were developed to be

used with any IDMS database. One stores the data necessary

for defining relations in terms of a network data structure

(STOREMAP) and the other implements a relational algebra

query (NETTOREL).

STOREMAP and NETTOREL are written as generic programs so

they could be used with any IDMS database. They were

written in COBOL because the mapping definitions use table

indices to identify the sets and areas used and COBOL

handles tables very efficiently. COBOL also allows for

redefining memory which was :ed frequently in STOREMAP and

NETTOREL.

IDMS was chosen for the network database model because

it was the only network model available. A batch input was

I. chosen since it was what was most readily available on the
-system which had an IDMS capability.

LI-l-i



CHAPTER III SYSTEM DESIGN

"F'! "The generic programs STOREMAP and NETTOREL are written

.' in structured code to make them easy to understand and

enhance. Figure III-I contains a high level structure chart

of both programs. A complete set of data structure charts

for STOREMAP and NETTOREL are contained in Appendix E.

A complete data dictionary for both generic programs

containing the paragraph and variable names used is

maintained on a DBase II relational database. A copy of the

relations and the structure used is given in Appendix F.

3.2 GENERIC MAPPING PROGRAM

Before the relational algebra query can be implemented

the relations must be defined. Since the underlaying data

structure is network the data dictionary and mapping

operators are to be stored within each IDMS database to be

queried. There is a set network data structures to be used

for the dictionary and mapping operators. It is defined in

Figure 111-2, and the associated subschema modification is

given in Appendix C.

3.2.1 BATCH INPUT

All inputs to the mapping structure generic program

STOREMAP is in the form of batch input cards. The first

nine characters on each card define the card type

(SUBSCHEMA, RELATION, RECORD, ATTRIBUTE, SET MAPPING or
'U

END).

111-2
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Translate Store Data

Fill Data
SyntaxDictionary

Table

NETTOREL

Nil.

Retrieve Fl

Figure III-i. Data Structure Charts
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RELATIONS-
MAPPED

RELATION- RELATION-
RECORDS SETS

RECOiDS SETS-
MAPPED MAPPED

RECORD- RECORDS-
ATTRIBUTE MAPPING

ATTRIBUTE- RECORD-
MAPPED MAPPINGS

Figure 111-2. Data Dictionary Bachman Diagrams
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* x An end card must be placed after a group of set,

attribute, and mapping card types. The order of the card

types form an implied relation. Figure 111-3 is a example

relation used for setting up its associated batch cards

given in Figure 111-4.

As you can see the first card is a subschema card and

there can only be one. The next card is a relation card and

all cards following it define the relation ABC until the

next relation card is encountered or an end of file maker is

set.

The next series of cards are the sets contained within

the relation ABC. Since there can be more than on set card

an end card is needed so STOREMAP will know that the next

card will be a record card.

The record card for record type A is followed by a

series of attribute cards which defines the attributes

contained in relation ABC which are stored on record type A

occurrences. Once again an end card is needed to signify

that the next card is not an attribute card but rather a

mapping card.

The mapping cards that follow are associated only with

record type A and the end card signifies that the next card

is either a record card, a relation card or an end of file

marker. In this example it is a record type card for record

B and the definitions for that record type follows.

-111-5I" II-
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Record
-~ Type A

Set Set
AB 

A-C

Record Record
Type B Type C

Figure 111-3. Bauchman Diagram of Relation ABC
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SUBSCHEMA ABC-SUB-SCHEMA
RELATION ABC
SET A-B
SET A-C
END
RECORD A REGION-A 0
ATTRIBUTE Al 00 00 02 X
ATTRIBUTE A2 02 02 02 X
ATTRIBUTE A3 04 04 02 X
END
MAPPING 6 A
MAPPING 2 B A-B
MAPPING 2 C A-C
MAPPING 9
END
RECORD B REGION-A
ATTRIBUTE B1 00 06 02 X
ATTRIBUTE B2 02 08 02 X
ATTRIBUTE B3 04 10 02 X
END
MAPPING 6 B
MAPPING 1 A
MAPPING 2 C A-C
MAPPING 9
END
RECORD C REGION-A 0
ATTRIBUTE C1 00 12 02 X
ATTRIBUTE C2 02 14 02 X
ATTRIBUTE C3 04 16 02 X
END
MAPPING 6 C
MAPPING 1 A
MAPPING 2 B A-B
MAPPING 9
END

Figure 111-4. Relation ABC Batch Input Cards

111-7
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3.2.2 DATA STRUCTURE MAPPING

The generic program NETTOREL which implements the

relational algebra queries must have a mapping of the

network data structure to a relation. This is done with a

series of network operators which form a path through the

network database. The completion of the path signifies a

tuple within the specified relation.

Lets go back to our example relation ABC and assume we

have a query to retrieve the relation ABC. Since no selects

were requested the first mapping will be used which is the

mapping defined for record type A. NETTOREL will retrieve

the first occurrences of record type A in the area REGION-A.

After a successful retrieval of a record type A record

occurrence than the first record type B record occurrence

owned by that record type A occurrence is retrieved.

Finally the first record type C record occurrence owned by

that record type A is retrieved and a tuple is added to the

relation. That is assuming that the path was complete and

there was at least one record type B owned to the retrieved

record type A and at least one record type C was owned to

the retrieved record type A.

3.2.3 NETWORK STRUCTURE

The data structure within the network database model is

a series of areas which contain record types linked together

by set types. These sets define an explicit relationship

111-8
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* between record types and a collection of record types which

are all connected by set types are used to form a relation.

* * The sets form a navigation path among the record types.

This path may or may not be circular. Either way the

relational algebra query determines which record type the

path traversal starts with.

Remember in the example there was no select so the

navigation started with record type A. If there had been a

select such as select B1 where B1 = "bl" then the navigation

would have started at record type B then A then C.

In addition since record type B has the calc flag set

then instead of using an obtain first record in area

operator being used the immediate value "bl" can be moved to

the B1 field in the network working storage area and an

obtain calc operator used so only record type B occurrences

which have a value of "bl" in the Bi field will be

retrieved. This is the reason why each record type must

have its own navigation path defined and stored on the data

dictionary.

3.2.4 DATA DICTIONARY

The records in the network to relational data structure

mappings form the data dictionary for the relational model.

The RELATIONS-MAPPED record contains the name of the

relation to be used in relational algebra queries each

record occurrence of RELATIONS-MAPPED has a pointer to the

111-9
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sets and a pointer to the records that it owns (Figure III-

2).

Each occurrence of RECORDS-MAPPED contains the record

type name used by the network model, the area it is stored

in and a flag if this record type can be reached via a calc

operator. It also has a pointer to the ATTRIBUTE-MAPPED

record occurrences it owns and a pointer to the RECORD-

MAPPINGS it owns.

ATTRIBUTE-MAPPED contains the relational attribute names

associated with the network fields used in that record type

and their field displacement, length and data type. Its

pointers are to the other attributes owned by the same

RECORDS-MAPPED.

RECORD-MAPPINGS contains the op-code needed to translate

the network operator for the data retrieval, the record type

to be retrieved and if needed the set to be used. Its

pointers are also used to link other RECORD-MAPPINGS

occurrences owned by the same RECORDS-MAPPED.

SETS-MAPPED contains the network set names used to

retrieve data for a relation. Its pointers are also used to

link other SETS-MAPPED occurrences owned by RELATIONS-

MAPPED.

3.2.5 MAPPING OPERATORS

There are five obtain operators which can be used to

navigate through the network database in the data structure

111-10
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mappings and each has an associated operation code. The

operators and their op-code is given in Appendix D. Figure

111-5 shows how the example batch input cards for relation

ABC would be translated.

IDMS Operators Needed

OBTAIN NEXT A WITHIN REGION-A
OBTAIN NEXT B WITHIN A-B
OBTAIN NEXT C WITHIN A-C
END OF MAP

Becomes Mapping Cards
6 A
2B A-B
2C A-C
9

Figure 111-5. How to Build Mapping Cards

The RECORDS-MAPPED, SETS-MAPPED and ATTRIBUTE-MAPPED

record types are used not only to define the relations, but

also to lessen the amount of space needed to store the

mapping operators. The generic mapping program, STOREMAP,

and data retrieval program, NETTOREL, stores this data in a

table structure and associates an index with each record

type name, set type name and attribute name. These indices

are then used to formulate the mapping operator along with

op-codes that form an entry of up to three numbers to be

translated from their equivalent character strings. An

example of how these operator mappings are formulated is

. given in Figure 111-6.

V°l-i
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RELATION ABC

SET(l) SET(2)
A-B A-C

RECORD(1) RECORD(2) RECORD(3)
A B C

STORED MAPPING
61

4 221
232
9

Figure 111-6. Data Dictionary Table

3.3 GENERIC DATA RETRIEVAL PROGRAM

The generic data retrieval program, NETTOREL, uses the

data dictionary and mapping operators stored by the mapping

r.h program, STOREMAP, with the relational algebra query to

generate a result relation.
A..

3.3.1 BATCH INPUT

The first batch input card contains the name of the

subschema to be used, which contains the name of the

database to be queried. Only one network database may be

queried under this design. All others are relational

algebra query cards to and result cards which contain the

name to be associated with the resulting relation. Multiple

queries are allowed. Figure 111-7 is an example of what the

batch cards might look like for the query examples already

given.

111-12
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" "- First query

' -Retrieve relation ABC.
Second query:
Retrieve tuples in ABC where attribute B1 has a
value of bl.

SUBSCHEMA ABC-SUB-SCHEMA
QUERY ABC.?
RESULT RELATION ABC
QUERY ABC. : (BI = "bl")?
RESULT ABC WHERE Bi IS bl

Figure 111-7. Example Query Batch Input Cards

Syntax checks are made on the query to insure that it

conforms to the syntax given in Appendix A. To make it

easier for NETTOREL to interpret the query special delimiter

characters were defined. For example to signify the end of

a relation name a period is used. To signify the start and

end of a select parenthesis are placed around all select

clause. In addition parenthesis can be used to set

precedence for the logical operators and/or. The slash (U)

is used to show the end of a relational operator (select,

project or join) and a question mark (?) denotes the end of

a query.

3.3.2 DATA STRUCTURE MAPPING

The network data structure mapping which gives the

navigation path of the relation is stored within the network

database. Each obtain operator has a uniquje op-code

associated with it and an index to the record type to be

obtained as well as the set type if needed.

- 11 -13
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The navigation path to be used to retrieve the data by

NETTOREL is dependent on the relational algebra query. If

it contains a select or join operation on an attribute which

is the key field in a network record type which can be

reached via an obtain calc operation then that record types

mapping records will be used to navigate the database. If

an obtain calc can not be used then the mappings of the

first record type which contains an attribute selected or a

record type in common with both relations in a join will be

used. If there is no select or join clause then the

mappings of the first record type are used.

3.3.3 QUERY IMPLEMENTATION

C When a relation name is encountered in a query its

structure information is read off of the network database

data dictionary and stored within the generic program's,

NETTOREL, data dictionary table in working storage. The

relational select clauses cause extra tests to be performed

on retrieved record occurrences to see if a record

occurrence's data is to be moved to the result area or

discarded. A join causes the mapping records of two

relations to form a new mapping for the relation which

results from the join. The project operator changes which

fields are to be shifted from a record occurrence which

meets selection criteria to the result area.

1
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3.3.4 HANDLING DUPLICATES

When a tuple is created it does not have to contain data

from all the record types used to navigate the database. In

instances where all of a record type is not used or even

none of a record type is used two path completions may

differ only by the data skipped. This means duplicate

tuples could be stored in the result area which is not

allowed according to the rules of relational algebra.

. To avoid the possibility of duplicates occurring in a

resulting relation a sort technique is used to group

-° duplicates together so they will be easy to find and

eliminate.

3.3.5 OUTPUT

0 The output for the relational algebra query is in a

table format with a maximum width of 132 characters. The

attribute names are used to label each column and the width

*of the column is determined by the attribute width or the

width of the attribute name, whichever is greater.

11...
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SYSTEM IMPLEMENTATION

4.1 GENERAL IMPLEMENTATION

The implementation of this thesis research consists of

two generic IDMS COBOL application programs called STOREMAP

and NETTOREL. STOREMAP is a mapping storage program w. ich

is used to fill the relational data dictionary. The

information stored in the dictionary defines the relations

which can be queried against by relational algebra. It also

stores the mappings of the network data structure to the

relational data structure. NETTOREL uses the data

dictionary, data structure mappings and relational algebra

query to create a result relation.

No IDMS DML statements are used in either program,

STOREMAP or NETTOREL. Instead their equivalent COBOL call

* statements are used to enable both programs, STOREMAP and

NETTOREL, to access any IDMS database. This is provided by

passing variables rather then literals to the IDMS database

manager.

IV-l
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CHAPTER IV SYSTEM IMPLEMENTATION

H" The paragraphs within both programs were developed in a

hierarchical structure for ease of maintenance and

understanding. A special paragraph numbering scheme was

used to represent the calling sequence of the paragraphs.

For example paragraph 1.1.1 is called by paragraph 1.1. If

the first character is an A, such as A.1 then the paragraph

is multipurpose and is performed by several other

paragraphs. A data structure chart is given in Appendix E

for both STOREMAP and NETTOREL.

COBOL requires that all data storage be defined at

compile time. This means that all the tables used by both

generic programs are predefined and set limitations have

been placed on the size of the relations which can be

queried. These limitations are given in Appendix H.

4.2 GENERIC MAPPING PROGRAM

An IDMS application program STOREMAP was written in

COBOL to store the mapping of the CODASYL to relational data

structures within the database being queried. The IDMS

operators were written as COBOL call statements instead of

IDMS DML to make the STOREMAP generic.

4.2.1 DATA STRUCTURE MAPPING

Each network database which is to use the generic data

retrieval program NETTOREL must have a subschema which

contains all of the record types to be used in a relational

query. This is provided to the generic program through a

IV-2
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CHAPTER IV SYSTEM IMPLEMENTATION

batch input on the first card. The format of this card is

provided in Appendix G.

4.2.2 NETWORK STRUCTURE

There are no limitations placed on the types of IDMS

databases which may be used with these generic programs.

However for a record type to be included in a relation it

must be connected via a set type to at least one other

record type in the relation or be the only record type in a

relation. An additional requirement is that all record

types in a relation must be connected via set types. Since

the data structure mappings are defined by the DBA it is up

to him to determine which path to define if multiple paths

exists through the record types. In fact the same record

types and set types can be used in different relations with

different path definitions.

4.2.3 DATA DICTIONARY

The relational data dictionary consists of five record

types and four set types which are to be defined with a

subschema prior to executing the generic mapping program

STOREMAP within each database to be queried. The STOREMAP

." can then be used to store the data in the data dictionary

ufor each relation to be defined in terms of the CODASYL

database. This must be done prior to executing the generic

data retrieval program, NETTOREL. This is the

IV-3
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CHAPTER IV SYSTEM IMPLEMENTATION

responsibility of the DBA since he is the most knowledgable

of the structure of the database and the intent of the user.

4.2.4 MAPPING OPERATORS

A series of IDMS operators defining the relations in

terms of a navigation of the network data structure is also

stored on the database with the mapping program, STOREMAP.

There are five possible obtain operators and they are listed

in Appendix D.

To lessen the amount of storage space needed to store

these operators the set types and record types were read

into a table in the mapping program, STOREMAP. Their

indices are used as a code along with an associated op-code

for each type of obtain. Rules for how these are formulated

is included in Appendix H. The STOREMAP stores the set

types and record types on the data dictionary in the order

of their indices so that the data retrieval program,

NETTOREL, can interpret the mappings the same way the

mapping program did.

4.3 GENERIC DATA RETRIEVAL PROGRAM

The generic data retrieval program, NETTOREL, uses batch

input cards to set up the database being used. These cards

also contain the relational algebra queries to be

implemented and the names to be associated with the result

relations. The syntax for the batch input cards are given

in Appendix G.

IV-4
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CHAPTER IV SYSTEM IMPLEMENTATION

4.3.1 QUERY RETRIEVAL

. - The relational algebra query is to be in the format of

Appendix A and uses the symbols defined there. It is

possible f'r multiple queries to be requested as long as

they are all against the same database and their record

types are defined within the specified subschema. The

format of the query cards is listed in Appendix G.

4.3.2 DATA STRUCTURE MAPPING

The data dictionary entry for each relation is stored in

the generic programs', STOREMAP and NETTOREL, working

storage in the form of a table. Each record type and set

type has an index associated with it depending on which

, record occurrence it is on the database. These indices were

generated by the mapping program, STOREMAP, depending on the

order of the batch input cards and the order of the previous

records on the database.

4.3.3 QUERY IMPLEMENTATION

When a relation name is encountered in a query its

.structure information is read off the network database data

- . dictionary and stored within NETTOREL's data dictionary

table in working storage. The relation operators

encountered cause flags to be set in the data dictionary

table within the the table entry for the record type which

*-. contains the attribute involved in the operation. The
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CHAPTER IV SYSTEM IMPLEMENTATION

associated data needed for the operation is stored in a

separate table for that operator.

After the entire query has been processed and the

associated select, project and join flags set then NETTOREL
'4.

determines which mappings to use and stores that in a

separate mapping table. It then processes that table in

sequential order. If a particular return causes the end of

set flag to be set then the mapping index is decremented.

If the retrieval is successful then select criterion are

check. If they are successful then the mapping index is

incremented. When the end of mapping op-code is encountered

then the projects are performed and the tuple is stored in

the result table in its appropriate location.

4.3.3.1 SELECT IMPLEMENTATION

After a successful data retrieval has been completed on

a record type its select flag is checked to see if it is

set (greater then zero). When the flag is set all
attributes contained within that record is checked to see if

they are part of a select clause. This is indicated by the

presence of a 1 (left side) or 2 (right-side) in the select

side variable.

When the variable is suppose to be on the right side of

a select clause then the retrieved value of that attribute

is stored in the compare field of the appropriate select

table entry (the value in the select table index for that

IV-6
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CHAPTER IV SYSTEM IMPLEMENTATION

attribute). When it is on the left side then it is compared

to the value in the compare field and the results are pushed

onto a select stack. Retained within the select table entry

is an additional boolean operator and a disposition flag to

indicate if the selection is complete. When complete the

select stack is popped until an open parenenthis is found

and if it is the first entry on the stack then the truth

value is stored in the result-flag. If the result flag is

false then the contents of the current record is not stored

in the current tuple being built.

4.3.3.1 PROJECT IMPLEMENTATION

0 When the end of mapping op-code is encountered then the

project table is checked to see which of the result fields

are to be stored in the final tuple result. The result

table consists of the result working area displacements and

field lengths. These are used with a series of move

statements to create the final tuple. The tuple is then

placed in its appropriate location in the result table.

4.3.3.3 JOIN IMPLEMENTATIONS

The join operator is used to create the mapping table to

be used to navigate the database. The record type to be

joined over will determine which mappings from each of the

relations being joined is to be used. The mapping

. associated with that record type in the first relation will
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be used in the first part of the mapping table and the

mapping associated with that record type in the second

relation will follow all the mappings in the first relation

with the end of map mapping removed and the first mapping

retrieving the common record type removed from the second

set of mappings.

4.3.3 HANDLING DUPLICATES

A check must be made within the data retrieval program,

NETTOREL, to avoid storing duplicate tuples. This could

have been done by sorting the result file after it was

completely filled and removing duplicates within the sort.

This would allow all of the result information to be

maintained on secondary storage. It also would take longer

to implement a routine to handle an optimal sort then time

permitted within this thesis effort and the issue is not

pertinent to the objective of the effort.

The approach that was taken was to keep the result file

in a table form within working storage. As a tuple is

created it is added in the table in the appropriate sorted

order. This is done by comparing the new tuple to the

current last tuple. If it is greater, it is added in the

next table location. If it isn't, then it is compared to

the next, until a tuple is found of equal or lesser value.

This indicates that the tuple is to be rejected or inserted
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following the lesser tuple. This will take advantage of

databases which are stored in an ascending sorted order.

"- 4.3.4 OUTPUT

Each time a path is completed the resulting tuple will

be stored in the result table as specified above. After all

tuples have been retrieved the result table will be written

to the specified output file. The size of the record will

be limited to 132 characters and its format will be

determined by the width of the attribute name or size

depending on which is longer.
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CHAPTER V

TESTING

5.1 TESTING DATABASE DESCRIPTION

*An IDMS demonstration customer database set up by the

Cullinet Corporation was used to test both generic programs,

STOREMAP and NETTOREL. It consists of four areas (CUSTOMER-

REGION, ORDER-REGION, PRODUCT-REGION, AND SALES-REGION) and

eight record types (CUSTOMER, ORDOR, ITEM, OREMARK, PRODUCT,

SALES, CTRL AND CORPIND). The structure of the database is

given in Figure V-i. The relation structures is given in

.. FIgure V-2. The testing plan for both generic programs is

-~ included in Appendix K.

5.2 GENERIC MAPPING PROGRAM

The testing database chosen did not provide a through

validation test of the generic mapping program STOREMAP. To

do so would require testing the program with several

different IDMS databases with varying levels of complexity.

The possible data structure of a network database are

* numerous and to test all of them would be too time consuming

for this thesis effort.
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Figure V-i. Test Database Bachman Diagrams
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CHAPTER V TESTING

Relation Relation
CUSTOMER ORDER ORDER CONTENTS

Attributes Attributes
CUSTOMERNUMBER ORDER NUMBER
CUSTOMER NAME QNT SHIPPED
CUSTOMER ADDR QNT ORDERED
CUSTOMERC ITY
CUSTOMER ZIP
ORDER NUMBER
SHIP CODE

Relation Relation
CUSTOMER SALES SALES PRODUCTS

Attributes Attributes
CUSTOMER NAME PRODUCT NUMBER
SALES UNIT PRODUCT DESC
SALES AMOUNT SALES UNIT
SALES AMOUNT

Figure V-2. Test Relation Structure
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CHAPTER V TESTING

5.2.1 TESTED DATA STRUCTURES

The tested database contained a looping structure which

made it possible to test the different mappings for each

record type to ensure that the same relation was returned

independent of the starting record type. It also contained

record types which were owned by more than one record type

and record types which owned more than one record type. In

addition record types which belonged in one area owned

record types in another. These are the most common data

structures currently found in network databases.

5.2.2 STRUCTURES NOT TESTED

The database tested was chosen because it was already

available and time did not permit the writing of the

application programs needed to create and fill a new

database which might contain more complicated network

structures. This was left for a follow-on effort which

should contain record types with multiple sets defined

between them, and relations that contain link records. The

Presidents database is currently being used for testing of

relational database model efforts and could be set up as a

network for testing this thesis effort.

5.3 GENERIC DATA RETRIEVAL PROGRAM

The generic data retrieval program, NETTOREL, did not

*I receive a through test because a variety of data structures

* were not defined as relations. But all possible

v-

, V-4



CHAPTER V TESTING

combinations of the select, project and join operators were

tested. There were two types of structures for testing the

join. Two relations were joined across a record type which

was owned by a different record type in each relation and

two relations were joined over a record type which owned a

different record type in each relation.

5.4 SYNTAX CHECKS

Both programs, STOREMAP and NETTOREL, used a batch input

which required that they perform syntax checks on the cards

read in. The syntax checks were set up according to

Appendix A and G. The test plan incorporated tests to

verif" that syntax errors were detected.

v
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.CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

The basis to this thesis effort was to use a network

application program to provide a relational view of a

. network database. This was done by storing information

about the record and set types used in each relation in a

relational data dictionary and a set of network operators to

define the mapping between a network data structure and a

relational data structure. This information was then used

by a generic data retrieval program, NETTOREL, along with a

relational algebra query to create a relational result

table.

6.1.1 NETWORK IMPROVEMENTS

The network model is more efficient because it has a

great deal of control over how the data is stored and

accessed. This control also forces the user to have a

strong grasp of the network data structure to navigate the

database. In fact most user's have to rely on an
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application programmer to write an interface for them to

- access their data.

This thesis project still needs to know how to navigate

the database, but once that is defined, by the DBA, for each

relation to be queried, the users can write their own

relational algebra queries. This lessens the amount of

application programs needed for different views of the

database. It also allows multiple user's access to the same

relations even if the data they need is very different.

6.1.2 RELATIONAL IMPROVEMENTS

The relational model is more user friendly then the

network database model but because it is at so high a level

of abstraction from the data storage and access it allows

for implementations which have very slow data access and

redundant storage of data. By using a network data

*. structure to retrieve the data and a network application

program to provide the user with a relational view of the

data the efficiency of the network model can be used without

giving up the ease of use of the relational model.

6.2 RECOMMENDATIONS

This thesis was a first attempt at using the network

model to act as a data access interface for the relational

" model. There are improvements that can be made to make the

system more user friendly. Both generic programs, STOREMAP

VI-2
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CHAPTER VI CONCLUSIONS AND RECOMMENDATIONS

" and NETTOREL would have been easier to use if an

interactive input had been chosen. Not all the relational

operators were implemented. In addition, no update

capability has been included.

6.2.1 MAPPING PROGRAM ENHANCEMENTS

The mapping program lends itself to a menu driven data

entry system. Since the record and set types available are

* already defined within the IDMS database this information

can be retrieved from the IDMS data dictionary and displayed

to the user for them to choose those record and set types to

be defined within a relation.

It would also be possible for software to be generated

that would take one record type relational data structure

path and translate it into all the other paths needed for

each record type. This would make the DBA's job easier.

6.2.2 DATA RETRIEVAL PROGRAM ENHANCEMENTS

Only the select, project and join relational algebra

operators were implemented. To make the system a complete

relational database model the union, intersection,

difference, division and cartesian product operators should

be implemented. An update capability would also be

desirable in addition to some algebraic capabilities such as

sums, and averages.

To allow a cartesian product operation to be perform the

.* definition of a relation in this effort would have to be

VI-3
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CHAPTER VI CONCLUSIONS AND RECOMMENDATIONS

modified since there would be no explicit relationship

defined between the two relations (set type). The result

relation would have essentially two separate mappings

(Figure VI-1).

To provide a relational insertion and deletion

capability the problem of incomplete information has to be

addressed. For example, a record type might be used to

navigate the database for defining a tuple for a given

relation, but none of its data used. If a tuple was to be

inserted the database would not have the missing data or be

able to establish the pointers needed in the linking record

type. Deletions could result in records being left which

weren't needed or reachable and record occurrences linked to

record occurrences other then the one being deleted could be

lost.

Entering the relational queries interactively with a

format similar to System R which uses blank tables would be

more user friendly along with a interactive output in the

same format.

This research also lends itself to using a natural

language translator for the relational query inputs as

opposed to using relational algebra queries since the

relational database model has such a high level of

abstraction. A translator would increase productivity and

.- ,and ease of use.
|VI.I
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CHAPTER VI CONCLUSIONS AND RECOMMENDATIONS

Defined Relations

Relation ABC Relation DEF

Record Record

Type A Type B

Set A-B Set A-C Set D-E Set D-F

Record Record Record Record
Type B Type C Type E Type F

Relation ABCDEF after cartesian product

Record Record
. Type A Type B

Set A-B Set A-C Set D-E Set D-F

Record Record Record Record
Type B Type C Type E Type F

- Figure VI-1. Result of a Cartesian Product
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APPENDIX A

RELATIONAL ALGEBRA SYNTAX

OPERATOR SYNTAX

Select relation. (field name =, <, >, not) or, and (...)

Project relation. % field name, field name,

Join relation. * relation.

EXAMPLES

Find tuples where al = a2 and a3 <= "B" in relation A

A. (al = a2 and a3 <= "B")?

Project a2, a3 and a4 from relation A

A. % a2, a3, a4?

Join relations A and B

A. * B.?

All three in one query

A. (al ; a2 and a3 <= "B")/ % a2, a3, a4/ * B.?

.A-1
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APPENDIX B

SCHEMA

SCHEMA NAME IS RSCHEMA VERISON IS 1.
INSTALLATION. ASD.

FILE DESCRIPTION.
FILE NAME IS RELATION ASSIGN TO RELATION

DEVICE TYPE IS 3330B.

AREA DESCRIPTION.
" .0 AREA NAME IS RELATION-REGION

RANGE IS 4501 THRU 5000
WITHIN FILE RELATION

FROM 1 THRU 500.

RECORD DESCRIPTION.

RECORD NAME IS RELATIONS-MAPPED.
RECORD ID IS 650.
LOCATION MODE IS CALC USING RELATION-NAME

DUPLICATES ARE NOT ALLOWED.

WITHIN RELATION-REGION AREA.
03 RELATION-NAME PIC X(16).

RECORD NAME IS RECORDS-MAPPED.
RECORD ID IS 651.
LOCATION MODE IS VIA RELATION-RECORDS SET.

WITHIN RELATION-REGION AREA.
03 RECORD-NAMES PIC X(16).
03 AREA-NAME PIC X(16).
03 CALC-FLAG PIC 9.

RECORD NAME IS ATTRIBUTE-MAPPED.

RECORD ID IS 652.
LOCATION MODE IS VIA RECORD-ATTRIBUTE SET.

WITHIN RELATION-REGION AREA.
03 ATTRIBUTE-NAME PIC X(16)
03 ATTRIBUTE-DISP PIC 99.
03 FIELD-DISP PIC 99.
03 FIELD-LEA4GTH PIC 99.
03 FIELD-TYPE.

05 SIGN-FLAG PIC X.
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05 WHOLE-NUM PIC 9.
05 DECIMAL-FLAG PIC X.
05 DECIMAL PIC 9.

05 COMP-TYPE PIC X.

RECORD NAME IS RECORD-MAPPINGS.
RECORD ID IS 652.
LOCATION MODE IS VIA RECORDS-MAPPING SET.

WITHIN RELATION-REGION AREA.
03 OP-CODE PIC 9.
03 RECORD-NAMES PIC X(16).
03 SET-OR-AREA PIC 99.

RECORD NAME IS SETS-MAPPED.
RECORD ID IS 654.
LOCATION MODE IS VIA RELATIONS-SETS SET.

WITHIN RELATION-REGION AREA.
03 SET-NAME PIC X(16).

SET DESCRIPTION.

SET NAME IS RELATION-RECORDS.
ORDER IS NEXT.
MODE IS CHAIN.

OWNER IS RELATIONS-MAPPED NEXT DBKEY POSITION IS 1.I-MEMBER IS RECORDS-MAPPED NEXT DBKEY POSITION IS
MANDATORY AUTOMATIC.

SET NAME IS RECORD-ATTRIBUTE.
ORDER IS NEXT.
MODE IS CHAIN.
OWNER IS RECORD-MAPPED NEXT DBKEY POSITION IS 2.
MEMBER IS ATTRIBUTE-MAPPED NEXT DBKEY POSITION IS 1

MANDATORY AUTOMATIC.

SET NAME IS RECORDS-MAPPING.
ORDER IS NEXT.
MODE IS CHAIN.
OWNER IS RECORDS-MAPPED NEXT DBKEY POSITION IS 3.
MEMBER IS RECORD-MAPPINGS NEXT DBKEY POSITION IS 1

MANDATORY AUTOMATIC.

SET NAME IS RELATION-SETS
ORDER IS NEXT.
MODE IS CHAIN.
OWNER IS RELATIONS-MAPPED NEXT DBKEY POSITION IS 2.
MEMBER IS SETS-MAPPED NEXT DBKEY POSITION IS 1

MANDATORY AUTOMATIC.
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APPENDIX C

SUBSCHEMA

ADD SUBSCHEMA NAME IS RSUBSCHM
OF SCHEMA NAME IS RSCHEMA
DMCL NAME IS RDMCL.

ADD RECORD RELATIONS-MAPPED
ERASE NOT ALLOWED.

ADD RECORD RECORDS-MAPPED
ERASE NOT ALLOWED.

ADD RECORD ATTRIBUTE-MAPPED
ERASE NOT ALLOWED.

ADD RECORD RECORD-MAPPINGS
ERASE NOT ALLOWED.

ADD RECORD SETS-MAPPED
ERASE NOT ALLOWED.

' m .1
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APPENDIX D

DATA STRUCTURE MAPPING OPERATORS

1 OBTAIN OWNER WITHIN SET

2 OBTAIN NEXT WITHIN SET

4 OBTAIN PRIOR WITHIN SET

5 OBTAIN FIRST WITHIN AREA

6 OBTAIN NEXT WITHIN AREA

8 OBTAIN PRIOR WITHIN AREA

END OF MAP

o,
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APPENDIX E

DATA STRUCTURE CHARTS

STOREMAP

1-INPUT- 2-STORE-
BATCH DATA-

DICTIONARY

E-1
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APPENDIX E DATA STRUCTURE CHARTS

1-INPUT-
BATCH

1-1-PROCESS- 1-2-FILL-
SUBSCHEMA DATA-

DICTIONARY-
TABLE

E-2
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1-1-PROCESS-
SUBSCHEMA

1-1-1-PREPARE-
DATABASE
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APPENDIX E DATA STRUCTURE CHARTS

1-2-FILL-
DATA-
DICTIONARY-

TABLE

1-2-1-STORE- 1-2-2-
RELATION- TRANSLATE-
CARDS MAPPPING-

CARDS

E-4
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APPENDIX E DATA STRUCTURE CHARTS

1-2-1-STORE-
RELAT ION-
CARDS

STORE- STORE
SET- RECORD-
CARDS CARDS

1- - - -1 - -1 2 1

ATTRIBUTE- MAPPING-
CARDS CARDS
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APPENDIX E DATA STRUCTURE CHARTS

TRANSLATE-
MAPPING-
CARDS

1-2-2-1- 1-2-2-2-
FIND- FIND-
MATCH SET-INDEX
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*APPENDIX E DATA STRUCTURE CHARTS

2-STORE-
DATA-
DICTIONARY

2-1-STORE-
RELATION-
RECORDS

2-1-1- 2-1 -2-
STORE- STORE-
RECORD- SET-
RECORDS RECORDS

E-7
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APPENDIX E DATA STRUCTURE CHARTS

:.

STORE-
RCDARECORD-
CR IRECORDS

2-1-1-2- 2-1-1-3-,iSET- STORE- STORE-
""RECORD- ATTRIBUTE- MAPPING-
SCURRENCIESI RECORDS RECORDS

"" 2-1-1-2-1- 2-i-i-3-1-
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CURRENCIES
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NETTOREL

1-PROCESS- 2-RETRIEVE-
BATCH- DATA
CARDS
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APPENDIX F

PAGE NO. 00001 NETTOREL Data Dictionary

LEVEL VARIABLE NAME PART OF VARIABLE

1 INPUT-CARD

3 CARD-TYPE INPUT-CARD

3 TYPE-DATA INPUT-CARD

3 SCHEMA-DATA INPUT-CARD

5 SUBSCHEMA-NAME SUBSCHEMA-DATA

3 QUERY-DATA INPUT-CARD

5 QUERY-CHARACTERS QUERY-DATA

7 QUERY-STRING QUERY-CHARACTERS

3 RESULT-FILE INPUT-CARD

5 RESULT-TABLE-NAME RESULT-FILE

3 ERROR-DATA INPUT-CARD

5 ERROR-MESSAGE ERROR-DATA

5 ERROR-CHARACTER ERROR-DATA

5 ERROR-LOCATION ERROR-DATA

1 RELATION-REPORT-TABLE

3 REPORT-LINE RELATION-REPORT-TABLE

1 SELECT-TABLE

3 MAX-SELECTS SELECT-TABLE

3 RECORD-SELECTS SELECT-TABLE
* 5 LEFT-VARIABLE RECORD-SELECTS

F-1
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APPENDIX F DATA DICTIONARY

PAGE NO. 00002 NETTOREL Data Dictionary

LEVEL VARIABLE NAME PART OF VARIABLE

5 SELECTOR-CHARACTER RECORD-SELECTS

5 COMPARE-FIELD RECORD-SELECTS

5 RIGHT-VARIABLE RECORD-SELECTS

5 AND-OR-FLAG RECORD-SELECTS

5 OPERATOR-DISPOSITION RECORD-SELECTS

1 PROJECT-TABLE

3 MAX-PROJECTS PROJECT-TABLE

3 ATTRIBUTE-PROJECTED PROJECT-TABLE
5- ..

- 5 PROJECT-RELATION ATRIBUTE-PROJECTED

"'5 PROJECT-RECORD ATTRIBUTE-PROJECTED

5 PROJECT-ATTRIBUTE ATTRIBUTE-PROJECTED

1 JOIN-TABLE

A 3 MAX-JOINS JOIN-TABLE

3 RELATIONS-JOINED JOIN-TABLE

5 MEMBER RELATIONS-JOINED
C,..
. 7 MEMBER-NAME MEMBER

1 DATA-DICTIONARY-TABLE

3 MAX-RELATIONS DATA-DICTIONARY-TABLE

3 RELATIONS DATA-DICTIONARY-TABLE

... 5 RELATION-NAME RELATIONS

F-2
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PAGE NO. 00003 NETTOREL Data Dictionary

LEVEL VARIABLE NAME PART OF VARIABLE

5 MAX-SETS RELATIONS

5 SETS RELATIONS

7 SET-NAME SETS

5 MAX-RECORDS RELATIONS

5 RECORD-S RELATIONS

7 RECORD-NAMES RECORD-S

7 AREA-NAMES RECORD-S

0 7 CALC-FLAG RECORD-S

7 SELECT-FLAG RECORD-S

7 JOIN-FLAG RECORD-S

7 MAX-ATTRIBUTES RECORD-S

7 ATTRIBUTES RECORD-S

9 ATTRIBUTE-NAME ATTRIBUTES

9 ATTRIBUTE-DISP ATTRIBUTES

9 FIELD-DISP ATTRIBUTES

9 FIELD-LENGTH ATTRIBUTES

9 FIELD-TYPE ATTRIBUTES

11 SIGN-FLAG FIELD-TYPE

11. WHOLE-NUM FIELD-TYPE

11 DECIMAL-FLAG FIELD-TYPE

F-3
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APPENDIX F DATA DICTIONARY

PAGE NO. 00004 NETTOREL Data Dictionary

LEVEL VARIABLE NAME PART OF VARIABLE

11 DECIMALS FIELD-TYPE

11 COMP-TYPE FIELD-TYPE

9 SELECT-SIDE ATTRIBUTES
* .4

9 PROJECT-FLAG ATTRIBUTES

9 SELECT-TABLE-INDEX ATTRIBUTES

7 MAX-MAPPINGS RECORD-S

7 MAPPINGS RECORD-S

9OP-CODE MAPPINGS

9 RECORDS-INDEX MAPPINGS

4% 9 SETS-INDEX MAPPINGS

1 HOLDING-AREA

3 WHOLE-STRING HOLDING-AREA

3 SINGLE-CHARACTERS HOLDING-AREA

5 EACH-CHARACTER SINGLE-CHARACTERS

7 HOLDING-STRING EACH-CHARACTER

;4* 3 QUERY HOLDING-AREA

5 QUERY-PART QUERY

7 IMEDIATE-VALUE QUERY-PART

4. 4. 9 FIRST-CHARACTER IMEDIATE-VALUE

.. 9 IMEDIATE-STRING IMEDIATE-VALUE
4...F-

F-4
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APPENDIX F DATA DICTIONARY

PAGE NO. 00005 NETTOREL Data Dictionary

LEVEL VARIABLE NAME PART OF VARIABLE

5 FIND-NAMES QUERY

7 RELATION-NAME FIND-NAMES

7 ATTRIBUTE-NAME FIND-NAMES

5 FIND-SELECTOR QUERY

7 SELECTOR FIND-SELECTOR

7 FIND-NOT FIND-SELECTOR

5 FIND-LOGICAL LOGICL-OP

7 LOGICAL-OP FIND-LOGICAL

7 QUERY-OPERATOR FIND-LOGICAL

1 MAPPING-TABLE

3 MAPPING-TABLE-ENTRY MAPPING-TABLE

5 MAPPED-OP-CODE MAPPING-TABLE-ENTRY

5 MAPPED-RELATIONS MAPPING-TABLE-ENTRY

5 MAPPED MAPPING

5 MAPPED-RECORDS MAPPING-TABLE-ENTRY

5 MAPPED-SETS MAPPING-TABLE-ENTRY

1 SETS-MAPPED

3 SET-NAME SETS-MAPPED

1 RECORd-MAPPINGS

3 OP-CODE RECORD-MAPPINGS

3 RECORD-NAMES RECORD-MAPPINGS

V.
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* APPENDIX F DATA DICTIONARY

4- S-.

S.

- PAGE NO. 00006 NETTOREL Data Dictionary

LEVEL VARIABLE NAME PART OF VARIABLE

3 SET-OR-AREA RECORD-MAPPINGS

1 ATTRIBUTE-MAPPED

3 ATTRIBUTE-NAME ATTRIBUTE-MAPPED

3 ATTRIBUTE-DISP ATTRIBUTE-MAPPED

3 FIELD-DISP ATTRIBUTE-MAPPED

3 FIELD-LENGTH ATTRIBUTE-MAPPED

3 FIELD-TYPE ATTRIBUTE-MAPPED

i RECORDS-MAPPED

3 RECORD-NAMES RECORDS-MAPPED

3 AREA-NAMES RECORDS-MAPPED

3 CALC-FLAG RECORDS-MAPPED

1 RELATIONS-MAPPED

3 RELATION-NAME RELATIONS-MAPPED

-F-6
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APPENDIX F DATA DICTIONARY

PAGE NO. 00001 STOREMAP Data Dictionary

LEVEL VARIABLE NAME PART OF VARIABLE

1 INPUT-CARD

3 CARD-TYPE INPUT-CARD

3 TYPE-DATA INPUT-CARD

3 SCHEMA-DATA INPUT-CARD

5 SUBSCHEMA-NAME SUBSCHEMA-DATA

3 QUERY-DATA INPUT-CARD

5 QUERY-CHARACTERS QUERY-DATA

O7 QUERY-STRING QUERY-CHARACTERS

3 RESULT-FILE INPUT-CARD

* 5 RESULT-TABLE-NAME RESULT-FILE

3 ERROR-DATA INPUT-CARD

5 ERROR-MESSAGE ERROR-DATA

5 ERROR-CHARACTER ERROR-DATA

5 ERROR-LOCATION ERROR-DATA

1 RELATION-REPORT-TABLE

3 REPORT-LINE RELATION-REPORT-TABLE

1 SELECT-TABLE

3 MAX-SELECTS SELECT-TABLE

3 RECORD-SELECTS SELECT-TABLE

5 LEFT-VARIABLE RECORD-SELECTS

F-7
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APPENDIX F DATA DICTIONARY

PAGE NO. 00002 STOREMAP Data Dictionary

LEVEL VARIABLE NAME PART OF VARIABLE

5 SELECTOR-CHARACTER RECORD-SELECTS

5 COMPARE-FIELD RECORD-SELECTS

5 RIGHT-VARIABLE RECORD-SELECTS

5 AND-OR-FLAG RECORD-SELECTS

5 OPERATOR-DISPOSITION RECORD-SELECTS

1 PROJECT-TABLE

3 MAX-PROJECTS PROJECT-TABLE

3 ATTRIBUTE-PROJECTED PROJECT-TABLE

.3 5 PROJECT-RELATION ATRIBUTE-PROJECTED
5 PROJECT-RECORD ATTRIBUTE-PROJECTED
5 PROJECT-ATTRIBUTE ATTRIBUTE-PROJECTED

1 JOIN-TABLE

3 MAX-JOINS JOIN-TABLE

3 RELATIONS-JOINED JOIN-TABLE

5 MEMBER RELATIONS-JOINED

7 MEMBER-NAME MEMBER

1 DATA-DICTIONARY-TABLE

3 MAX-RELATIONS DATA-DICTIONARY-TABLE

3 RELATIONS DATA-DICTIONARY-TABLE

5 RELATION-NAME RELATIONS

F-8
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APPENDIX F DATA DICTIONARY

* PAGE NO. 00003 STOREMAP Data Dictionary

LEVEL VARIABLE NAME PART OF VARIABLE

5 MAX-SETS RELATIONS

5 SETS RELATIONS

7 SET-NAME SETS

5 MAX-RECORDS RELATIONS

5 RECORD-S RELATIONS

7 RECORD-NAMES RECORD-S

7 AREA-NAMES RECORD-S

7 AELC-FLAG RECORD-S

7 ELC-FLAG RECORD-S

7 JOIN-FLAG RECORD-S

7 MAX-ATTRIBUTES RECORD-S

7 ATTRIBUTES RECORD-S

9 ATTRIBUTE-NAME ATTRIBUTES

9 ATTRIBUTE-DISP ATTRIBUTES

9 FIELD-DISP ATTRIBUTES

9 FIELD-LENGTH ATTRIBUTES

9 FIELD-TYPE ATTRIBUTES

11 SIGN-FLAG FIELD-TYPE

11 WHOLE-NUM FIELD-TYPE

11 DECIMAL-FLAG FIELD-TYPE

F-9
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APPENDIX F DATA DICTIONARY

.4.

e. PAEN. 00

PAGE NO. 00004 STOREMAP Data Dictionary

4' LEVEL VARIABLE NAME PART OF VARIABLE

11 DECIMALS FIELD-TYPE

11 COMP-TYPE FIELD-TYPE

9 SELECT-SIDE ATTRIBUTES

9 PROJECT-FLAG ATTRIBUTES

9 SELECT-TABLE-INDEX ATTRIBUTES

7 MAX-MAPPINGS RECORD-S

7 MAPPINGS RECORD-S

9 OP-CODE MAPPINGS

9 RECORDS-INDEX MAPPINGS

9 SETS-INDEX MAPPINGS

1 HOLDING-AREA

3 WHOLE-STRING HOLDING-AREA

3 SINGLE-CHARACTERS HOLDING-AREA

5 EACH-CHARACTER SINGLE-CHARACTERS

7 HOLDING-STRING EACH-CHARACTER

3 QUERY HOLDING-AREA

5 QUERY-PART QUERY

7 IMEDIATE-VALUE QUERY-PART

9 FIRST-CHARACTER IMEDIATE-VALUE

9 IMEDIATE-STRING IMEDIATE-VALUE

'1

~F-IO
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APPENDIX F DATA DICTIONARY

PAGE NO. 00005 STOREMAP Data Dictionary

LEVEL VARIABLE NAME PART OF VARIABLE

5 FIND-NAMES QUERY

7 RELATION-NAME FIND-NAMES
,'

'a 7 ATTRIBUTE-NAME FIND-NAMES

, 5 FIND-SELECTOR QUERY

7 SELECTOR FIND-SELECTOR

7 FIND-NOT FIND-SELECTOR

5 FIND-LOGICAL LOGICL-OP

7 LOGICAL-OP FIND-LOGICAL

7 QUERY-OPERATOR FIND-LOGICAL

1 MAPPING-TABLE

3 MAPPING-TABLE-ENTRY MAPPING-TABLE

*.4  5 MAPPED-OP-CODE MAPPING-TABLE-ENTRY

5 MAPPED-RELATIONS MAPPING-TABLE-ENTRY

5 MAPPED-RECORDS MAPPING-TABLE-ENTRY

5 MAPPED-SETS MAPPING-TABLE-ENTRY

a.I SETS-MAPPED

3 SET-NAME SETS-MAPPED

1 RECORD-MAPPINGS

a- 3 OP-CODE RECORD-MAPPINGS

3 RECORD-NAMES RECORD-MAPPINGS

F-I
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APPENDIX F DATA DICTIONARY

PAGE NO. 00006 STOREMAP Data Dictionary

LEVEL VARIABLE NAME PART OF VARIABLE

3 SET-OR-AREA RECORD-MAPPINGS

1 ATTRIBUTE-MAPPED

3 ATTRIBUTE-NAME ATTR A'TE-MAPPED

3 ATTRIBUTE-DISP ATTR --J-MAPPED

3 FIELD-DISP ATTRIBUTE-MAPPED

3 FIELD-LENGTH ATTRIBUTE-MAPPED

3 FIELD-TYPE ATTRIBUTE-MAPPED

1 RECORDS-MAPPED

3 RECORD-NAMES RECORDS-MAPPED

3 AREA-NAMES RECORDS-MAPPED

3 CALC-FLAG RECORDS-MAPPED

I RELATIONS-MAPPED

3 RELATION-NAME RELATIONS-MAPPED

I.F
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APPENDIX G

BATCH INPUT SYNTAX

-, STOREMAP

CARD TYPE COLUMNS DESCRIPTION

SUBSCHEMA 1-9 SUBSCHEMA

11-26 (SUBSCHEMA NAME)

• RECORD 1-9 RECORD

11-26 (RECORD TYPE NAME)

28-44 (AREA-NAME)

45 (CALC FLAG 0 OR 1)

ATTRIBUTE 1-9 ATTRIBUTE

11-27 (ATTRIBUTE NPME)

29-31 (FIELD DISPLACMENT)

33-35 (FIELD LENGTH)

'. 37 (SIGN FLAG S OR SPACE)

38 (NUMBER OF WHOLE DECIMAL PLACES)

39 (DECIMAL FLAG V OR SPACE)

40 (NUMBER OF DECIMAL PLACES)

41-43 (COMP TYPE C, Cl, C2, OR C3)

SET 1-9 SET

10-25 (SET NAME)

G-1



APPENDIX G BATCH INPUT SYNTAX

MAPPING 1-9 MAPPING

11 (OP-CODE)

13-28 (RECORD NAME)

30-46 (SET NAME)

NETTOREL

G-



APPENDIX H

TABLE LIMITATIONS

RELATIONS PER DATABASE 10

SETS PER RELATION 10

RECORD TYPES PER RELATION 10

ATTRIBUTES PER RECORD 10

MAPPINGS PER RECORD 10
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APPENDIX I

TEST PLAN

STOREMAP

SYNTAX

VALID CARD TYPES

SUBSCHEMA

RELATION

SET

RECORD

ATTRIBUTE

MAPPING

END

INVALID CARD TYPE

ANY OTHER

MISSING CARD TYPE

• 5 SUBSCHEMA

RELATION

SET

RECORD

ATTRIBUTE

MAPPING

END

a.
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APPENDIX I TEST PLAN

LOGIC

ADD CARD TYPE ALREADY PRESENT

SUBSCHEMA

RELATION

SET

RECORD

ATTRIBUTE

MAPPING

END

NETTOREL

SYNTAX

VALID CARD TYPE

0 SUBSCHEMA

QUERY

RESULT FILE

INVALID CARD TYPE

ANY OTHER

LOGIC

QUERIES

SELECT

PROJECT

JOIN

MULTIPLE SELECT

MULTIPLE PROJECT

MULTIPLE JOIN

1-2
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APPENDIX I TEST PLAN

.SELECT AND PROJECT

SELECT AND JOIN

SELECT, PROJECT AND JOIN

SELECT, JOIN AND PROJECT

PROJECT AND SELECT

PROJECT AND JOIN

PROJECT, SELECT AND JOIN

PROJECT, JOIN AND SELECT

JOIN (ONE OWNER TWO MEMBERS) AND SELECT

"" JOIN (ONE OWNER TWO MEMBERS) AND PROJECT

JOIN (ONE OWNER TWO MEMBERS), SELECT AND PROJECT

JOIN (ONE OWNER TWO MEMBERS), PROJECT AND SELECT

- JOIN (ONE MEMBER TWO OWNERS) AND SELECT

JOIN (ONE MEMBER TWO OWNERS) AND PROJECT4JOIN (ONE MEMBER TWO OWNERS), SELECT AND PROJECT

JOIN (ONE MEMBER TWO OWNERS), PROJECT AND SELECT

1-3
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' This thesis is an example of a mapping of a
relational algebra query onto a network database. It
consists of the requirements, definition, design and
implementation of two generic COBOL programs for
implementing such a mapping.

The.first program STOREMAP uses a batch input
file to build a data dictionary, on the original
network database, which defines the relations on
which relational algebra queries may be made. This
input file is created by the Data Base Administrator
who is the most knowledgeable of the structure of the
network database and the relations which would be
useful to the database's users.

The .second program NETTOREL uses the defined
relations in the data dictidnary and relational
algebra queries created by a user to generate a
result relations. Data to be included in a result
relation is determined by the data dictionary's
definition of the relations contained in an
associated query and the criteria set by that query.

This original effort shows that the theory for
such an operator mapping is valid. Further efforts
would be needed to make this implemetation user
friendly and therefore useful.
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